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Polymorphisms, Allelic Frequencies and Linkage of Alleles

To date, two functional polymorphisms, 677C→T in exon 41 and 1298A→C in exon 7,2

in the gene encoding the enzyme methylenetetrahydrofolate reductase (MTHFR) have
been found and characterized. Both lead to an amino acid change, and different bio-

chemical properties between the normal and variant enzyme have been demonstrated.3 In ad-
dition, a missense mutation (1793G→A in exon 114), three silent polymorphisms (129C→T
in exon 1,5 1068T→C in exon 6,6 and 1317T→C in exon 77), and three intronic polymor-
phisms (IVS2+533G→A,8 IVS6+31T→C9 and IVS10+262C→G8) have been reported, but
their functional implications are unknown.

Allele frequencies of the polymorphisms 677C→T and 1298A→C vary considerably ac-
cording to ethnicity (4-58%, and 9-37%, respectively,10-12 a more detailed description of the
frequency of the 677 variant is provided in chapter 2). The 1793G→A allele frequency varied
from 15.5 to 32.2% in four distinct ethnic populations,4 and the 1317T→C change was com-
mon (39 %) in an African American cohort,7 but essentially absent in German Caucasians.13

Data on frequencies of the remaining polymorphisms are limited.
The1298C-allele is in linkage disequilibrium with the 677C allele. Among the 9 possible

genotype combinations, the 677TT-1298AC, 677CT-1298CC, and 677TT-1298CC are rarely
observed, although a few cases have been reported.7,14

Figure 1 shows a graphical overview of the SNPs and their relative positions along the gene.

Methods for Genotyping MTHFR SNPs
Currently, there are some 30 different reported methods for the detection of polymor-

phisms of the MTHFR gene, but methods for the detection of 677C→T are by far the most
frequently described. These methods can, broadly, be divided into four categories: PCR/re-
striction fragment length polymorphism based assays (PCR/RFLP), allele-specific PCR assays,
heteroduplex assays, and real-time PCR with fluorogenic probes. In addition, the technique of
minisequencing,15 and the use of mass spectrometry16 has been reported.

Restriction Enzyme Based Assays, the 677C→T Variant
Figure 2 depicts some features of the assay reported by Frosst et al in the paper that first

described the 677C→T polymorphism.1 The enzyme HinfI recognizes the sequence GANTC
(N being any base). This implies that the variant sequence (GAGTC) is cleaved, whereas the
wild-type sequence GAGCC remains undigested. The forward primer was placed close to the
cleavage site and the reverse primer at some distance in the 3´ direction, producing a fragment
length of 198bp, and 175 and 23bp after cleavage. Figure 3, panel A, shows a schematic repre-
sentation of the fragments in a sieving gel. Alongside the three possible genotyping outcomes
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Figure 1. Polymorphisms of the MTHFR gene. Exons are numbered, and the positions of SNPs are indicated
along with the associated amino acid change (if any) and restriction enzyme(s) used for detection. *Artifi-
cially created restriction site.

Figure 2. Some features of the method by Frosst et al.1 Distances along the horizontal axis are drawn to scale,
and the PCR-primers are drawn as half-arrows.

Figure 3. Schematic drawing of gel electrophoresis, showing characteristics of different RE-based assays.
Panel A) Assay by Frosst et al.1 Panel B) Assay by Ulvik et al.18 Panel C) Assay by Bravo-Osorio et al.19 The
lanes labeled TT* and xx* denote a TT genotype that is partially digested, and any genotype with no
digestion, respectively. The distances between fragments are proportional to the differences in the logarithm
of the fragment sizes.
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(CC, CT and TT), profiles obtained after partial digestion of a homozygous TT genotype or
after no digestion (any genotype) are shown. The figure demonstrates that if HinfI digestion
fails, it is possible to make an erroneous genotype assignment. This problem, which is an
inherent feature of this assay design, was addressed in several subsequent publications. Van
Amerongen et al suggested coamplification with another fragment containing a HinfI recogni-
tion sequence,17 whereas Ulvik et al included a preamplified standard amplicon containing the
recognition sequence before addition of the restriction enzyme.18 The latter assay was opti-
mized for capillary electrophoresis with multiple injections, but the strategy is applicable to
traditional gel formats as well (Fig. 3, panel B). Yet another design was presented by Bravo-Osorio
et al They engineered an additional restriction site into the amplified fragment by using a
reverse primer that included an extra 25 bases containing the HinfI recognition sequence (Fig.
3, panel C).19 Benson et al demonstrated a multiplexing strategy where fluorescent primers of
different colors were incorporated into amplicons of the 677C→T and other polymorphisms
in separate PCR reactions.18 Restriction enzyme digestion was performed as appropriate, and
products were then pooled and separated by color as well as by size on an automated capillary
electrophoresis system. A digestion control for each SNP was added, similar to Ulvik et al.20

Restriction Enzyme Based Assays, the 1298A→C Variant and Other SNPs
An assay for the 1298A→C variant was first described by van der Put et al using the enzyme

MboII that cuts the 1298A allele.2 Weisberg et al, as they discovered the 1317T→C polymor-
phism, noted that the presence of 1317C generates a MboII recognition sequence that (using
the assay by van der Put et al) produces a restriction pattern almost identical to 1298A. To
overcome this problem, they used artificially- generated restriction sites (explained in Fig. 4) to
produce an alternative assay for 1298A→C as well as an assay for 1317T→C using the en-
zymes Fnu4HI and TaqI, respectively.7 Yi et al, modified the assay for 1298A→C by van der
Put et al so that fewer fragments were generated after cleavage. Moreover, they coamplified
fragments for the 677 and 1298 polymorphisms, but performed separate cleavages using the
HinfI and MboII enzymes, respectively, followed by pooled gel electrophoresis.21 However,
they failed to take into account the interference by 1317T→C. Meisel et al used two allele-specific
long range PCRs targeting the 677C and 677T alleles separately, followed by the analysis of
1298A→C devised by Weisberg et al to establish allelic association between the two polymor-
phic sites.13 A new assay for 1298A→C has recently been developed by Leclerc et al using the
enzyme MwoI (described in Chapter 1). An assay has been reported for 1793G→A using the
enzyme BsrbI which cuts the G variant.4 The 129C→T variant creates a AvaI site,5 and the
1068T→C variant creates a HhaI recognition site,6 but has also been analysed using the en-
zyme CfoI.5 Figure 1 lists the reported restriction enzymes used for the analysis of each poly-
morphism.

Figure 4. Artificially-created restriction sites. The strategy used by Weisberg et al7 for detecting the 1298A→C
variant is shown. The mutagenic primer changes one base in the template (marked by an asterisk), and the
resulting PCR amplicon contains the Fnu4HI recognition sequence when the 1298C-allele is present.
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Allele-Specific PCR Assays, General Description
This type of assay, as well as the PCR/RFLP assay, was first described in the 1980s. Differ-

ent variations are known under such acronyms as ARMS (amplification refractory mutation
system), ASA (allele-specific amplification), and MS-PCR (mutagenically- separated PCR).
The idea behind these assays is that a PCR primer that ends at the polymorphic position will
only bind completely to one of the variants, which will then be amplified at normal efficiency,
whereas the other variant will not be amplified, due to the mismatch generated at the last base.
In order to design effective assays, some knowledge of the refractoriness of different mismatches
to amplification is advisable. A few studies have been reported (summarized in ref. 22). Gen-
eral findings are that G : T mismatches confer low specificity, and the sequence-specific primer
should not end with an A. In some cases (sequence contexts), substantial amounts of PCR
product from the wrong allele may be generated if reaction conditions (annealing temperature
and number of PCR cycles) are not carefully optimized. Strategies such as shortening the primer,
adding a competitive primer,23 and, most often, adding additional mismatches close to the
3´end24 have been used to enhance selectivity.

Assays have been designed where the wild-type and mutant alleles are detected in separate
reactions, or the two alleles are detected in the same tube (MS-PCR). Both strategies can be
multiplexed to include several SNPs.

Allele-Specific PCR Assays for MTHFR Genotyping
Hill et al described a MS-PCR assay detecting both 677 alleles in the same tube.25 The same

strategy was used by Ulvik et al who designed a multiplex assay for the simultaneous detection
of the 677C→T and factor V 1691G→A variants.26 This was later extended to include
1298A→C (unpublished). Endler et al extended the assay to also encompass the prothrombin
20210G→A polymorphism.27 Two other studies report multiplexing of three SNPs (including
677C→T), carried out in two reaction tubes.28,29 The advantage of allele-specific methods
over the restriction enzyme assays is that allele-specific reaction products, directly detectable by
electrophoresis, are generated during PCR. Furthermore, these methods are readily amenable
for multiplexing. Multiplex MS-PCR, however, rapidly reaches a limit of complexity. A three-way
multiplex MS-PCR assay involves the simultaneous amplification, in an allele-specific and
balanced manner, of up to 6 products, requiring careful control of the relative amount of each
primer. The two-tube strategy is more straightforward, but does not involve the competitive
priming of allele-specific primers as in MS-PCR. In some cases, this could increase the risk of
spurious priming and false results. In addition, depending on the assay design, there may be a
need for an extra control amplicon for confirmation of adequate reaction conditions.29 As long
as the reaction conditions/primers are properly optimized, allele-specific PCR is a rapid and
reliable assay.

Heteroduplex Assays
These assays are robust and well suited for multiplexing. However, they usually require the

formation of so-called heteroduplex generators (HDGs). This is a fairly complex process that
involves the generation of an artificial DNA construct, using site-directed mutagenesis of the
sequence encompassing the polymorphism, followed by confirmation and testing of the con-
struct. Figure 5 illustrates the effect of a heteroduplex generator. This construct is usually
coamplified with the DNA of interest and the assay is somewhat sensitive to the ratio of the
amount of HDG-construct to DNA. Enhanced resolution by separation on polyacrylamide
gels combined with long electrophoresis times is usually necessary. At least three reports using
this method are found in the literature: Clark et al30 for the 677C→T mutation, Bowen et al31

for the 677C→T polymorphism multiplexed with two other SNPs, and Barbaux et al32 for
677C→T with 1298A→C as well as two other polymorphisms. Once the heteroduplex gen-
erators are prepared, and their effects verified, these assays, similarly to the allele-specific PCR
assays, require no post-PCR processing (other than electrophoresis).
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Real-Time PCR with Fluorogenic Probes—Homogenous Assays
The development of fluorescent labeling technology, and systems for detection of fluores-

cence during amplification, have facilitated the development of these techniques, which are
fairly recent additions to the methodological repertoire (see refs. 33,34 for reviews). Some of
the reported methods require sophisticated, yet increasingly available, equipment for real-time
PCR detection, but for some methods, a post-PCR reading in an ordinary fluorimeter is ad-
equate. An important reason for the rapid gain in popularity of these methods is that they are
homogenous, meaning that all ingredients for genotyping are added to one tube, and results
are obtained without further manipulations. This also removes the most important source of
contamination in PCR: the reintroduction of PCR products to the PCR setup. At least seven
reports, using these techniques to detect MTHFR polymorphisms, have been published, divis-
ible into two main categories as described below.

5´Exonuclease and Molecular Beacon Assays
The molecular beacon and 5´-exonuclease (also known as TaqMan) assays have a number of

similarities. Both use probes that are doubly labeled oligonucleotides with a reporter fluorophore
at the 5´end and a quencher at the 3´end. The beacon probes contain a short additional se-
quence at both ends, with internal homology, so that a hairpin loop is created. The probe will
then be in an equilibrium between intramolecular hybridization, and hybridization to a target.
In the former state, fluorescence is quenched whereas opening the hairpin structure allows the
reporter to fluoresce.35 Signal generation from the 5´exonuclease probe stems from cleavage of
the probe by the 5´exonuclease activity of the DNA polymerase during PCR, thereby releasing
the fluorophore from the quencher.36

Both types of assays depend on the different binding strengths of the probes to the normal
and variant sequences on target DNA. Giesendorf et al used molecular beacons in separate
reactions for the determination of the 677C→T alleles,37 whereas Happich et al used the
TaqMan format and two differently labeled probes in the same tube for the simultaneous
determination of both 677C→T alleles.38 Ulvik et al demonstrated that the homogenous for-
mat (TaqMan) is compatible with direct analysis on blood without DNA purification. In-
cluded were the 677C→T and 1298A→C polymorphisms.39

Figure 5. Principle of a heteroduplex assay. A heteroduplex generator (HDG) is constructed by site-directed
mutagenesis to contain a short deletion 1-3 bases from the variable site. This construct is coamplified with
target DNA, and after the last cycle of PCR the amplicons are melted and allowed to reanneal. Apart from
correctly annealed homoduplexes (target amplicons and HDG amplicons), heteroduplexes are formed, with
a short bubble due to the deletion in the HDG. The size of the bubble depends on the surrounding sequences
including the variant base. Thus, the heteroduplexes containing the variation are seen by their differential
electrophoretic migration.
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The competition between target and internal hybridization of the molecular beacons is said
to enhance the selectivity of this format. A study comparing the 5´exonuclease probes and
molecular beacons, however, found only a marginal difference in the ability to discriminate
between variants40 A recent development of the TaqMan probes is the addition of a minor
groove binder which allows shorter and thereby more selective probes.41 Ulvik et al however,
showed that short (16-20bp) probes can function without the aid of minor groove binders.39

Hybridization Probe Assays
In hybridization probe assays, singly labeled hybridization probes are used. The labeled

probe hybridizes in close proximity to a second fluorophore, either attached to one of the PCR
primers, or an additional hybridized oligonucleotide. Signal is detected as fluorescence reso-
nance energy transfer (FRET) from the probe fluorophore to the second (acceptor) fluorophore.
Genotyping is done by performing a melting curve analysis after PCR. A completely matched
probe melts at a higher temperature than one with a mismatch against the target. The data are
analyzed and plotted as the derivative of signal with respect to temperature (-dF/dT) against
temperature. The probe may be homologous to the normal, or variant allele, and one probe is
sufficient for genotyping.42

Two variants of the assay format outlined above for the analysis of 677C→T have been
published.42,43 Von Ahsen et al demonstrated a hybridization probe assay multiplexed by using
different fluorophores for the two SNPs 677C→T and factor V 1691G→A.44 Crockett et al,
on the other hand, showed that quenching of the probe fluorophore mediated by proximal
guanosines in the target sequence was sufficient as a hybridization-dependent signal for the
generation of melting temperature curves. In their report, the 677C→T was among the in-
cluded SNPs.45

Comparison of the Different Homogenous Formats
The singly labeled probes used in the hybridization probe assays are easier and less costly to

produce than the doubly labeled probes associated with the TaqMan and molecular beacon
(and some other) formats. On the other hand, the melting temperature analysis carried out
with hybridization probes requires specialized equipment and software, whereas the assays us-
ing doubly labeled probes are all compatible with a one-time reading of fluorescence after PCR
(although all three quoted reports make use of real-time PCR equipment). Using the principles
outlined in the paper by Crockett et al,45 hybridization probe assays may be designed, using
one singly labeled probe per SNP, as opposed to two doubly labeled probes per SNP for the
TaqMan/molecular beacon format. Also, the potential for multiplexing several SNPs in the
same tube are greater when melting curves and differently labeled fluorophores are combined,44,46

(reviewed in ref. 33). Finally, with the hybridization probe assay, additional base substitutions
within the boundary of the probe may be more easily discovered, and not compromise the
interpretation of results.33 A minor drawback with the hybridization probe assay has been that
the equipment involves capillary tubes, which do not conform to the industry standard 96-well
format. Recently, other melting curve-based assays have been published,47,48 and a wider vari-
ety of equipment has been introduced.

Assessment of Methods
Frequently, when a new polymorphism is detected, a PCR/RFLP assay is designed. These

assays are easy to perform and do not require expensive or specialized equipment. If a suit-
able restriction enzyme is not available, the format is still applicable by the generation of
artificial restriction sites. A digestion control should be included, and, among the different
variants described above, perhaps the most simple and elegant solution was presented by
Bravo-Osorio et al.19

Allele-specific PCR is an alternative characterized by less handling time, as the step involv-
ing the restriction enzyme digestion is obviated.
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Generally, some of the reported PCR/RFLP and allele-specific PCR assays may benefit
from moving one of the primers closer to the variant position, thereby making the relative
difference of fragment sizes larger. This would enhance resolution and shorten migration time
in electrophoresis.

A minor but finite problem associated with many of the described assays is additional sub-
stitutions near the position of the SNP of interest. This may affect the recognition sequence of
the restriction enzyme, the binding of allele-specific primers, and the binding of fluorogenic
probes.49 The heteroduplex method and hybridization probe assay are probably the most resil-
ient to this influence. If anomalies in the migration pattern of heteroduplexes, or melting peaks
of hybridisation probes are detected, reanalysis by sequencing should be performed. An addi-
tional strength of the heteroduplex assay is its multiplexing capability, although multiplexing
can also be obtained with allele-specific PCR and with the real-time PCR strategy described by
von Ahsen et al and others.33,44 The homogenous assay formats are characterized by speed, ease
of operation, and contamination control.

Preparation of DNA Material
An important part of genotyping is the preparation of DNA for subsequent processing

(usually involving PCR). If traditional purification methods, such as phenol-chloroform ex-
traction, are used, this part of the overall workload may require more time and effort than the
actual genotyping. Recently, a number of DNA purification techniques have been developed,
which involve no hazardous chemicals and with the potential for automation. It is often over-
looked that PCR-based genotyping may not require highly purified DNA. Also, the amount of
DNA needed for successful genotyping is small. A few nanograms are sufficient in most cases.
This is less than the amount contained in 1 µl of whole blood. There have been a number of
reports where blood and other biological fluids have been used directly for PCR, either with-
out, or with minimal treatment.50,51 This includes complicated multiplexed assays,26,29 as well
as one example referred to above using a homogenous assay format.39 Also, in studies using
archival material such as paraffin-embedded tissue slices, simple boiling protocols have been
described.52,53 When using blood as template, it is necessary to use a DNA polymerase that is
tolerant to inhibiting substances. If such information for a particular enzyme is lacking, it can
easily be obtained by appropriate tests.

In laboratories where automated DNA purification has been established, there may be lo-
gistic reasons for sample purification. A convenient storage format for future analyses, e.g.,
microtiter plates with dissolved DNA and identifier tags, may then be established. In our
laboratory, we have had good experience with aliquoting purified DNA into PCR tube strips
or PCR plates and letting it air-dry. Plates can then be stored at ambient temperature or 4˚C
for months, shipped to another laboratory, or processed immediately by adding a PCR master
mix. This works with purified DNA (2-20 ng) as well as with unpurified blood (≤ 1µl).

Throughput Considerations
When more than a few hundred SNPs per week need to be analyzed, throughput, or time

spent per sample, becomes important. The way this is addressed partly depends on whether
600 SNPs refers to one SNP in 600 samples, 3 SNPs in 200 samples, or 20 SNPs in 30 samples.
In the first case, the workload falls heavily on the DNA preparation step, and genotyping
without template purification could be considered as a means of increasing throughput and
decreasing cost. The second case seems to be ideal for some of the multiplexed methods de-
scribed above. Multiplexing also ensures that the correct ensemble of SNPs is assigned for any
given sample.

None of the assays described thus far seems ideal for the last case. Most of the PCR/RFLP,
allele-specific PCR, and heteroduplex methods quoted above involve a fair amount of manual
handling (e.g., preparation and loading of gels, photographing etc.) All these assays, however,
are compatible with automated capillary electrophoresis, or equivalent, for fragment analysis.
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The homogenous assays require minimal sample handling, mainly the setup of reagents, which
can be carried out by a robotic workstation, and genotype annotation is usually automated.

New Technologies and Future Developments
Thus far, fairly established methods of genotyping have been described. The great interest

in determination of single nucleotide polymorphisms has motivated the development of new
assay formats offering unprecedented levels of automation and throughput. Among recently
developed technologies are the Invader assay,54 fluorescence polarization detection,55

Pyrosequencing, which is a form of chemical sequencing without subsequent gel-separation,56

DNA microarrays, PNA based probing, and mass spectrometry detection.16 Many of the new
methodologies are aimed at large-scale, genome-wide mapping of SNPs, which are beyond the
scope of this chapter. However, the reader should be aware of the rapidly expanding possibili-
ties, including assays on-demand that are currently offered by several companies.
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